Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification
نویسندگان
چکیده
In this paper, we present a study on the characterization and the classification of textures. This study is performed using a set of values obtained by the computation of indexes. To obtain these indexes, we extract a set of data with two techniques: the computation of matrices which are statistical representations of the texture and the computation of "measures". These matrices and measures are subsequently used as parameters of a function bringing real or discrete values which give information about texture features. A model of texture characterization is built based on this numerical information, for example to classify textures. An application is proposed to classify cells nuclei in order to diagnose patients affected by the Progeria disease.
منابع مشابه
Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملGray level co-occurrence matrix texture analysis of germinal center light zone lymphocyte nuclei: physiology viewpoint with focus on apoptosis.
In our study we investigated the relationship between conventional morphometric indicators of nuclear size and shape (area and circularity) and the parameters of gray level co-occurrence matrix texture analysis (entropy, homogeneity, and angular second moment) in cells committed to apoptosis. A total of 432 lymphocyte nuclei images from the spleen germinal center light zones (cells in early sta...
متن کاملClassification of cell nuclei using shape and texture indexes
In this paper, we present a study on the characterization and the classification of binary digital objects. This study is performed using a set of values obtained by the computation of "shape and texture indexes". To get the shape indexes, we extract a set of data called "measures" from 2D shapes, like for example surface and perimeter. These indexes are then used as parameters of a function re...
متن کاملTexture Features from Gray level Gap Length Matrix
sever& texture features are introduced from a proposed higher-order statistical matrix, the gray level gap length matrix (GLGLM). The GLGLM measures the gray level variations in an image. It complements the gray level run length matrix (GLRLM) and is more superior when the number of gray level is large. Features extracted from the weighted GLGLM can be used to estimate the size distribution of ...
متن کاملTexture-based classification of different single liver lesion based on SPAIR T2W MRI images
BACKGROUND To assess the feasibility of texture analysis (TA) based on spectral attenuated inversion-recovery T2 weighted magnetic resonance imaging (SPAIR T2W-MRI) for the classification of hepatic hemangioma (HH), hepatic metastases (HM) and hepatocellular carcinoma (HCC). METHODS The SPAIR T2W-MRI data of 162 patients with HH (n=55), HM (n=67) and HCC (n=40) were retrospectively analyzed. ...
متن کامل